

Available online at www.sciencedirect.com

Journal of the European Ceramic Society 27 (2007) 3843-3846

www.elsevier.com/locate/jeurceramsoc

Dielectric properties and phase transitions of $Bi_3Nb_{1-x}Ta_xO_7$ fluorite-type dielectrics

Urša Pirnat*, Danilo Suvorov

"Jožef Stefan" Institute, Advanced Materials Department, Jamova 39, 1000 Ljubljana, Slovenia

Available online 19 April 2007

Abstract

A study of $Bi_3Nb_{1-x}Ta_xO_7$ ceramics revealed that these solid solutions undergo an incommensurate-to-commensurate, $Fm3m \Leftrightarrow I\bar{4}m2$, phase transition. An analysis of the microwave dielectric properties showed that an increase of *x* for the $Bi_3Nb_{1-x}Ta_xO_7$ results in a slight decrease in the permittivity and an increase in the $Q \times f$ values for both crystal modifications. However, the order–disorder phase transition at temperatures below 900 °C reduces the dielectric losses: the $Q \times f$ values for the commensurate-tetragonal $Bi_3Nb_{1-x}Ta_xO_7$ samples are in the range 300–400 GHz higher than the values of the incommensurate-cubic analogues. In addition, the phase transition induces positive values of the temperature coefficient of resonant frequency (τ_f) for the commensurate-tetragonal $Bi_3Nb_{1-x}Ta_xO_7$ fluorite-type dielectrics. © 2007 Elsevier Ltd. All rights reserved.

Keywords: LTCC; Dielectric properties; Niobates

1. Introduction

Investigations of the stabilization by doping of the hightemperature δ -Bi₂O₃ (thermodynamically stable from 729 to 825 °C)¹ phase were initiated because it crystallizes in the face-centred-cubic (fcc) crystal structure, akin to the defect fluorite-type unit cell.² Due to a highly disordered defect fluorite structure with an oxygen sublattice that is 75% occupied² the interstitial vacancy transport³ of oxygen leads to an exceptionally high conductivity. One of the best-known solid-state oxygen-ion conductors is found in the Bi₂O₃–Nb₂O₅ and Bi₂O₃–Ta₂O₅ systems.⁴ Phase investigations showed that δ -Bi₂O₃ was found in the largest compositional range in each system.^{5–7}

A study of the fluorite-like homogeneity region in the $Bi_2O_3-Nb_2O_5$ system revealed that it extends to 26 mol% Nb_2O_5 .⁸ Crystallographic studies determined this phase as being 3+3D incommensurately modulated,⁹ with an underlying average fluorite unit cell that has the space-group symmetry $Fm3m^{7,9,10}$; it is known in the literature as Type II. Our initial investigation of the formation characteristics of the incommensurate-cubic phase indicated that this phase undergoes a disorder-order phase transition to

0955-2219/\$ - see front matter © 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.jeurceramsoc.2007.02.048

the commensurate-tetragonal phase at temperatures below 900 °C.¹¹ The structural model proposed for this lowertemperature modification is the tetragonal fluorite-based unit cell with the $I\bar{4}m2$ space group.¹² The tetragonal modification is described as an ordered $3 \times 3 \times 7$ superstructure of the fluorite type δ -Bi₂O₃ and it is known as the Type III.

The δ -Bi₂O₃-related solid solution, labelled as Type II (extends from Bi₉TaO₁₆ to Bi₃TaO₇)^{6,7,13} in the Bi₂O₃-Ta₂O₅ system, is isomorphous with the analogue in the Bi₂O₃-Nb₂O₅ system. However, in contrast to Bi₃NbO₇, for the composition Bi₃TaO₇ only one temperature modification of the fluorite-like phase was found, the so-called Type II, with an incommensurate-cubic crystal structure. A refinement of structures in the Bi₂O₃-Ta₂O₅ system revealed that the labelled Type II^{*} (Bi₇Ta₃O₁₈) and Type III (Bi₄Ta₂O₁₁) are not fluorite-related structures.¹⁴ A recent synthesis involving mechanochemical activation showed that a fluorite-like solid solution of the cubic Bi₃Nb_{1-x}Ta_xO₇ exists across the whole range of compositions, $0 \le x \le 1$.¹³

In addition to the most frequently considered use of δ -Bi₂O₃ solid solutions, i.e., as a solid electrolyte, they were also proposed for use in low-temperature co-fired ceramic (LTCC) technology as a high-permittivity glass-free dielectric layer.¹⁵

On the basis of our initial investigations,¹¹ which indicated that the incommensurate-cubic Bi_3NbO_7 phase undergoes a phase transition to the commensurate-tetragonal, lowertemperature modification,¹¹ we began this investigation and

^{*} Corresponding author. Tel.: +486 1 477 3900; fax: +386 1 252 93 85. *E-mail address:* ursa.pirnat@ijs.si (U. Pirnat).

proved that an order–disorder phase transition occurs for the incommensurate-cubic $Bi_3Nb_{1-x}Ta_xO_7$ solid solution. Therefore, the aim of this paper is to present a study of the dielectric properties of fluorite-type $Bi_3Nb_{1-x}Ta_xO_7$ phases as a function of the phase transition in the MW frequency range. In addition, we investigated the effect of partially substituting Nb with Ta on the dielectric properties of $Bi_3Nb_{1-x}Ta_xO_7$ fluorite-type dielectrics.

2. Experimental

We prepared polycrystalline specimens of the Bi_3Nb_{1-x} Ta_xO_7 compositions, for x = 0, 0.1, 0.2, 0.3, 0.4, 0.6, using a solid-state reaction technique. Stoichiometric mixtures of dried reagent-grade oxides (Bi₂O₃, 99.975%, and Nb₂O₅, >99.9%, Alfa Aesar) were homogenized in a mortar with ethanol. The powders were first preheated at 750 °C for 10 h, and then ground and reheated twice at 800 °C for 5 h. During this heat treatment the Bi₂O₃ reacts to form Nb compounds and this permits additional firing at higher temperatures without significant losses of Bi. The calcinated powders were milled and then uniaxially pressed (at \sim 150 MPa) into pellets with a diameter of 10 mm and thickness varying from 3 to 4 mm. The sintering temperatures used were 880 and 950 °C, selected according to the thermal stability of the phases.⁸ The sintering times were chosen as 15, 80 and 250 h, after a consideration of the kinetics,⁸ in order to achieve single-phase materials. The relative density of all the samples was estimated from the microstructure to be >97%. Xray powder diffraction (XRD) (Bruker AXS D4 Endeavor) was used to determine the phase purity and the homogeneities of the specimens.

The MW dielectric properties were characterized using a network analyzer (HP 8719C) and the closed air-cavity method. The permittivities and *Q*-values were calculated at the resonant conditions (TE_{01δ} mode at around 4 GHz) from the S₁₁-reflection coefficients, as proposed by Kajfez and Hwan.¹⁶

3. Results

Solid-state synthesis of the compositions $Bi_3Nb_{1-x}Ta_xO_7$, where x = 0, 0.2, 0.4 and 0.6 at 950 °C for 15 h resulted in singlephase materials. The XRD powder-diffraction patterns shown in Fig. 1 for the samples with x = 0.2, 0.4, fired at 950 °C for 15 h revealed an isostructural symmetry with the pattern of a fluorite-type Bi_3NbO_7 (x=0), which crystallizes in the cubic Fm3m space group.¹⁰ These experimental results from Fig. 1 are in accordance with literature claims about the existence of the Bi₃Nb_{1-x}Ta_xO₇ solid solution.¹⁰Solid-state synthesis of the same compositions $Bi_3Nb_{1-x}Ta_xO_7$, x=0, 0.2, 0.4, and 0.6, at the lower temperature of 880°C and the sintering time of 80 h also resulted in a single-phase sample. However, as shown in Fig. 1, XRD patterns of Bi₃Nb_{1-x}Ta_xO₇, x = 0.2, 0.4, sintered at 880 °C have a completely different form than the one resulting from the treatment at 950 °C. The intense diffraction lines of these samples match the indexing of an isostructural Bi₃NbO₇ compound that crystallizes in the tetragonal $I\bar{4}m2$ space group.¹²

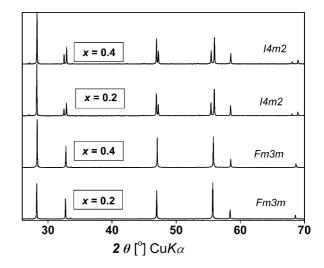
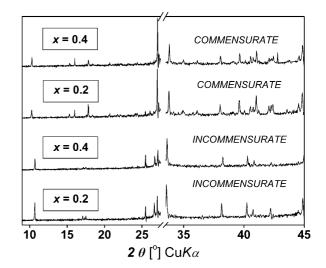
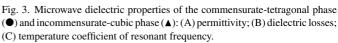


Fig. 1. X-ray powder-diffraction pattern comparison on the level of the prototype cell. $Bi_3Nb_{1-x}Ta_xO_7$ compositions with x = 0.2, 0.4, fired at 950 °C for 15 h with the cubic fluorite-like form in contrast to the same compositions fired at 880 °C for 80 h with tetragonal fluorite-like form.

Furthermore, a detailed comparison (Fig. 2) of the X-ray superstructural diffraction-peak patterns of cubic Bi₃Nb_{1-x} Ta_xO₇ samples, x=0.2, 0.4, fired at 950 °C for 15 h, reveals that satellite reflections of low intensity are present at the same positions as those reported for the composition x=0. This confirms similar incommensurate modulations of the cubic Bi₃Nb_{1-x}Ta_xO₇, x=0.2, 0.4, samples, as described by Miida and Tanaka.⁹ An analogous situation is presented in the same Fig. 2 for the commensurate $3 \times 3 \times 7$ superstructural identity of the tetragonal Bi₃Nb_{1-x}Ta_xO₇, x=0.2, 0.4 samples, which were obtained at 880 °C with the composition of x=0.¹²

Since Figs. 1 and 2 reveal structural identity on the level of the prototype cell and on the level of the superstructure modulation it is evident that the incommensurate-cubic

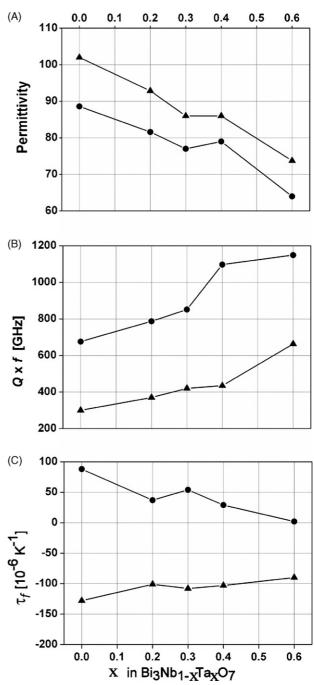



Fig. 2. X-ray powder superstructural diffraction pattern comparison of $Bi_3Nb_{1-x}Ta_xO_7$ compositions with x = 0.2, 0.4, fired at 950 °C for 15 h with the incommensurate-cubic fluorite-like form with the same compositions fired at 880 °C for 80 h with the commensurate-tetragonal fluorite-like form.

 $Bi_3Nb_{1-x}Ta_xO_7$ undergoes a certain kind of disorder-order phase transition below 900 °C to the commensurate-tetragonal $Bi_3Nb_{1-x}Ta_xO_7$. Furthermore, on the basis of the experimental work we established that the commensurate-tetragonal $Bi_3Nb_{1-x}Ta_xO_7$ homogeneity range exists and it is thermodynamically stable below 900 °C. A detailed investigation of the synthesis and stability of the commensurate, tetragonal $Bi_3Nb_{1-x}Ta_xO_7$ homogeneity range as well the crystallographic and kinetic aspects of the phase transition will be the focus of a special study. However, the analysis of the dielectric properties as a function of the disordered-order phase transition of $Bi_3Nb_{1-x}Ta_xO_7$ will be reported here.

As can be seen from the measured data in the MW frequency range plotted in Fig. 3(A) the permittivities of the incommensurate-cubic phase (\blacktriangle) and the commensuratetetragonal phase (\bullet) show a slight decrease with the increase in x of the Bi₃Nb_{1-x}Ta_xO₇. The permittivities of the incommensurate-cubic phases (\blacktriangle) decrease from a value of 102 for the composition with x=0, to 74 for the composition with x = 0.6. The effect of decreasing the permittivity with increasing x can also be seen in the case of the commensuratetetragonal phases (\bullet) , where the values change from 89 for the composition with x=0, to 65 for the composition with x = 0.6.

As the processing of both modifications yielded dense ceramics, the $Q \times f$ values can therefore be ascribed to changes in the intrinsic dielectric losses. The possibility of achieving higher $Q \times f$ values, comparable to Bi₂O₃–Nb₂O fluorite-like dielectrics, was the part of the study involving tailoring of the dielectric properties, and also the reason for studying the influence of a partial substitution of Nb with Ta. The trend for both phases can be seen in Fig. 3(B). In the case of the incommensurate-cubic (\blacktriangle) samples the $O \times f$ values increase from a value of 300 GHz for the composition with x=0 up to 663 GHz for the composition with x = 0.6. As in the case with Bi₂O₃-Nb₂O fluorite dielectrics, where an incommensuratecommensurate phase transition profoundly affects the dielectric losses,¹¹ we found the same trend for Nb with Ta-substituted phase analogues. The $Q \times f$ values of the Bi₃Nb_{1-x}Ta_xO₇ samples for the incommensurate-cubic phase (\blacktriangle) are much lower compared to the commensurate-tetragonal phase (\bullet) (Fig. 3(B) samples. The $Q \times f$ values for the commensurate-tetragonal phase (\bullet) samples increase from 676 GHz, for the composition with x=0, up to 1150 GHz, for the composition with x = 0.6, which is consistent with previous observations in similar systems.11,15


The phase transition of the $Bi_3Nb_{1-x}Ta_xO_7$ fluorite-type dielectrics has a most profound effect on the temperature coefficient of resonant frequency (τ_f) . The incommensuratecubic phase (\blacktriangle) samples have negative values of τ_f , which are found around -100 ppm K^{-1} (Fig. 3(C)). These negative values change with the phase transition into the commensuratetetragonal phase to become positive values. The values of τ_f for the commensurate-tetragonal phase (\bullet) samples vary with x from 88 to 2 ppm K^{-1} . These values can be useful for LTCC applications and a detailed optimisation of τ_f as a function of processing conditions is currently in progress.

4. Conclusions

Our measurements performed in the microwave frequency region for the high-temperature incommensurate-cubic $Bi_3Nb_{1-x}Ta_xO_7$ fluorite-type modification showed that an increase in x results in a slight decrease in the permittivity (values around 90) and an increase in the $Q \times f$ values. However, due to the incommensurately modulated structure the temperature coefficient of resonant frequency (τ_f) values of these samples were negative. We have furthermore shown that at a temper-

X in Bi3Nb1-xTaxO7

ature of 880 °C the low-temperature commensurate-tetragonal form of the Bi₃Nb_{1-x}Ta_xO₇ fluorite-type modification is stable.

Studies of the influence of the superstructural ordering showed that in the commensurate-tetragonal modification the dielectric losses are reduced due to a higher degree of ordering and the temperature coefficient of resonant frequency has positive values, most probably due to modifications of the oxygen sublattice. Furthermore, it was shown that the commensurate-tetragonal modification exhibits interesting dielectric properties and can be sintered to form dense ceramics below 900 °C, which is in accordance with the requirements for LTCC modules. This makes the commensurate-tetragonal Bi₃Nb_{1-x}Ta_xO₇ fluorite-type material an interesting candidate for high-permittivity glass-free LTCC dielectrics.

References

- Roth, R. S. and Waring, J. L., Phase equilibrium relations in the binary system bismuth sesquioxide–niobium pentoxide. J. Res. Nat. Bur. Stand. Sect A, 1962, 66A, 451–463.
- 2. Harwig, H. A., On the structure of bismuthsesquioixide: the α , β , γ and δ -phase. Z. Anorg. Allg. Chem., 1978, **444**, 151–166.
- 3. Depero, L. E. and Sangaleti, L., Structural disorder and ionic conduction: the case of Bi₂O₃. *J. Solid State Chem.*, 1996, **122**, 439–443.
- Takahashi, T. and Iwahara, H., Oxide ion conductors based on bismuthsesquioxide. *Mater. Res. Bull.*, 1978, 13, 1447–1453.
- Zhou, W., Jefferson, D. A. and Thomas, J. M., Defect fluorite structures containing Bi₂O₃: the system Bi₂O₃–Nb₂O₅. *Proc. R. Soc. Lond.*, 1986, A406, 173–182.

- Zhou, W., Structural chemistry and physical properties of some ternary oxides in Bi₂O₃-Ta₂O₅ system. *J. Solid State Chem.*, 1992, **101**, 1–17.
- Ling, C. D., Withers, R. L., Schmid, S. and Thompson, J. G., A review of bismuth binary oxides in the systems Bi₂O₃-Nb₂O₅, Bi₂O₃-Ta₂O₅, Bi₂O₃-MoO₃ and Bi₂O₃-WO₃. J. Solid State Chem., 1998, **137**, 42–61.
- Pirnat, U., Valant, M., Jančar, B. and Suvorov, D., Formation characteristics of the commensurate fluorite-type Bi₂O₃-Nb₂O₅ solid solution. *Chem. Mater.*, 2005, **17**, 5155–5160.
- Miida, R. and Tanaka, M., A modulated structure in a fluorite type fastion-conductor δ-(Bi₂O₃)_{1-x} (Nb₂O₅)_x. Jpn. J. Appl. Phys. Part 1, 1990, 29, 1132–1138.
- Castro, A., Aguado, E., Rojo, J. M., Herrero, P., Enjalbert, R. and Galy, J., The new oxygen-deficient fluorite Bi₃NbO₇: synthesis, electrical behaviour and structural approach. *Mater. Res. Bull.*, 1998, **33**, 31–41.
- Valant, M., Jančar, B., Pirnat, U. and Suvorov, D., The order–disorder transition in Bi₂O₃–Nb₂O₅ fluorite-like dielectrics. *J. Eur. Ceram. Soc.*, 2005, 25, 2829–2834.
- Ling, C. D. and Johnson, M., Modelling, refinement and analysis of the "Type III" δ-Bi₂O₃-related superstructure in the Bi₂O₃-Nb₂O₅ system. J. Solid State Chem., 2004, **177**, 1838–1846.
- Saito, T. and Miida, R., Crystal structures and ionic conductivity in Bi₂O₃-rich Bi₂O₃-Ta₂O₅ sintered oxides. *Jpn. J. Appl. Phys.*, 1999, **38**, 4838–4842.
- Ling, C. D., Thompson, J. G., Withers, R. L. and Schmid, S. A., Modeling and Rietveld refinment of the crystal structure of Bi₄Ta₂O₁₁ based on that of Bi₇Ta₃O₁₈. J. Solid State Chem., 1999, **142**, 33–40.
- Valant, M. and Suvorov, D., Dielectric properties of the fluorite-like Bi₂O₃-Nb₂O₅ solid solution and tetragonal Bi₃NbO₇. *J. Am. Ceram. Soc.*, 2003, 86, 939–944.
- Kajfez, D. and Hwan, E. J., Q-factor measurements with network analyzer. *IEEE Trans. Microwave Theory Tech.*, 1984, MTT-32, 666–670.